Opportunistic Data Structures with Applications

Paolo Ferragina Giovanni Manzini
Universita di Pisa Universita del Piemonte Orientale
Abstract Space reduction in data structural design is an attracdive i

sue, now more than ever before, because of the exponential

In this paper we address the issue of compressing andincrease of electronic data nowadays available, and becaus
indexing data. We devise a data structure whose space ocof its intimate relation with algorithmic performance im-
cupancy is a function of the entropy of the underlying data provements (see e.g. Knuth [16] and Bentley [5]). This has
set. We call the data structumpportunisticsince its space recently motivated an upsurging interest in the desigmef
occupancy is decreased when the input is compressible anglicit data structures for basic searching problems (see [23]
this space reduction is achieved at no significant slowdown and references therein). The goal is to reduce as much as
in the query performance. More precisely, its space occu- possible thauxiliary informationkept together with the in-
pancy is optimal in an information-content sense becauseput data without introducing any significant slowdown in
atextT[1,u] is stored using)(H(T')) + o(1) bits per in- the query performance. However, input data are represented
put symbol in the worst case, whekg, (T') is the kth or- in their entirety thus taking no advantage of possible repet
der empirical entropy of” (the bound holds for any fixed itiveness into them. The importance of those issues is well
k). Given an arbitrary stringP[1, p], the opportunistic data known to programmers who typically use various tricks to
structure allows to search for the:c occurrences of’ in T' squeeze data as much as possible and still achieve good
in O(p + occlog® u) time (for any fixed > 0). If data are query performance. Their approaches, though, boil down
uncompressible we achieve the best space bound currentlyo heuristics whose effectiveness is witnessed only by ex-
known [12]; on compressible data our solution improves perimentation.
the succinct suffix array of [12] and the classical suffix tree In this paper we address the issue of compressing and in-
and suffix array data structures either in space or in query dexing data by studying it in a theoretical framework. From
time or both. the best of our knowledge no other result is known in the

We also study our opportunistic data structure in a literature about the study of the interplay between com-
dynamic setting and devise a variant achieving effective pression and indexing of data collections. The exploitatio
search and update time bounds. Finally, we show how of data compressibility have been already investigatey onl
to plug our opportunistic data structure into the Glimpse with respectto its impact on algorithmic performance in the
tool [19]. The result is an indexing tool which achieves context of on-line algorithms (e.g. caching and prefetch-
sublinear space and sublinear query time complexity. ing [15, 17]), string-matching algorithms (see e.g. [1,12, 9

sorting and computational geometry algorithms [8].

) The scenario. Most of the research in the design of in-
1 Introduction dexing data structures has been directed to devise sadution
which offer a good trade-off between query and update time
Data structure is a central concept in algorithmics and versus space usage. The two main approaches/ard-
computer science in general. In the last decades it has beebasedndices andull-textindices. The former achieve suc-
investigated from different points of view and its basicade cinct space occupancy at the cost of being mainly limited
enriched by new functionalities with the aim to cope with to index linguistic texts [27], the latter achieve versaitil
the features of the peculiar setting of use: dynamic, persis and guaranteed performance at the cost of requiring large
tent, self-adjusting, implicit, fault-tolerant, just tdea few. space occupancy (see e.g. [10, 18, 21]). Some progress on
*Dipartimento di Informatica, Universita di Pisa, 56106 ®iltaly. E- full-text |n_d|ce_s has been recently af:hleved [12, .23]’ but a
mail: ferragin@di.unipi.it Supported in part by Italian MURST project ~asymptotical linear spaceemsinavoidable and this makes
“Algorithms for Large Data Sets: Science and Engineeringd &y UN- word-based indices much more appealing when space oc-
ESCO grant UVO-ROSTE 875.631.9. cupancy is a primary concern. In this context compression

Dipartimento di Scienze e Tecnologie Avanzate, Univarsitdl ; ; ;
Piemonte Orientale, 15100 Alessandria, Italy and IMC-CE&L00 Pisa, appears always as an attractive choice, if not mandatory‘

Italy. E-mail: manzini@mfn.unipmn.iSupported in part by MURST 60% P_rocessmg spe_ed is currently i_mproving at a faster rate tha
funds. disk speed. Since compression decreases the demand of

www.manaraa.com

storage at the expenses of processing, it is becoming more compressible string, our opportunistic data structure is
economical to store data in a compressed form rather tharthe first to achieve sublinear space occupancy. Given an
uncompressed. arbitrary patternP[1, p], such an opportunistic data struc-
Starting from these promising considerations, many re- ture allows to search for thecc occurrences o’ in 7" in
searchers have recently concentrated on dbmpressed O(p + occlog” u) time, for any fixede > 0.
matching problemintroduced in [1], as the task of per- The novelty of our approach resides in the careful combi-
forming string matching in a compressed text without de- nation of the Burrows-Wheeler compression algorithm [7]
compressing it. A collection of algorithms is currently with the the suffix array data structure [18] to obtain a sort
known to solve efficiently (possibly optimally) this prob- of compresseduffix array. We indeed show how &ug-
lem on text compressed by means of various schemes: e.gmentthe information kept by the Burrows-Wheeler algo-
run-length [1], LZ77 [9], LZ78 [2], Huffman [24]. All of rithm, in order to support effectiveandom accesses the
these results, although asymptotically faster than theséla compressed data without the need of uncompressing all of
cal scan-based methods, they rely on the scan of the wholehem at query time. We design two algorithms for operating
compressedext and thus result still unacceptable for large on our opportunistic data structure. The first algorithnris a
text collections. effective approach to search for an arbitrary pattefi, p|
Approaches to combine compression and indexing tech-in a compresseduffix array, taking)(p) time in the worst
niques are nowadays receiving more and more attention, esecase (Section 3.1). The second algorithm exploits compres-
pecially in the context of word-based indices, achieve®g sion to speed up the retrieval of the actual positions of the
perimentaltrade-offs between space occupancy and query pattern occurrences, thus incurring only isublogarithmic
performance (see e.g. [4, 19, 27]). An interesting idea to- O(log* u) time slowdown for any fixed > 0 (Section 3.2).
wards the direct compression of the index data structure |, some sense, our result can be interpreted as a method
has been proposed in [13, 14] where the properties of they, compressthe suffix array, and still support effective
Lempel-Ziv's compression scheme have been exploited t0gearches for arbitrary patterns. In their seminal paper,
reduce the number ofidex points still supporting pattern panber and Myers [18] introduced the suffix array data
searches. As a result, the overall index requires provably gt cture showing how to search for a patté?fi, p| in
sublinear space but at the cost of either limiting the searcho(p + logu + occ) time in the worst case. The suffix
to g-grams [13] or worsening significantly the query perfor- grray usesd(ulogu) bits of storage. Recently, Grossi
mance [14]. and Vitter [12] reduced the space usage of suffix arrays
_ A natural question arises_ at thi_s point: Do full-text in- g ©(u) bits at the cost of requiring (log® u) time to re-
dices need a space occupatiogar in the (uncompressed) trieve thei-th suffix. Hence, searching in this succinct suf-
text size in order to support effective search operations onfix array via the classical Manber-Myers’ procedure takes
arbitrary patterns? It is a common belief [27] that some O(p + log' ¢ u + oce log u) time. Our solution therefore
space overhead must be paid to use the full-text indices, buimproves the succinct suffix array of [12] both in space and
is this actually a provable need? query time complexity. The authors of [12] introduce also
other hybrid indices which achieve better query-time com-
plexity but yet requireQ(u) bits of storage. As far as the
problem of counting the pattern occurrences is concerned,
our solution improves the classical suffix tree and suffix ar-

Our Reaults. In this paper we answer the two questions
above by providing a novel data structure for indexing and
searching whose space occupancy fsirection of the en-
tropy of the underlying data set. The data structure is called) ;
opgzrtunisticin thgt, glthough no assumption on a partic- ray (_Jlata structures, because_they achigyg) time com-

ular distribution is made, it takes advantage of the com- PIXity and occup§)(ulogu) bits of storage.

pressibility of the input data by decreasing the space oc- N Section 4, we investigate the modifiability of our
cupancy ato significant slowdowrn the query perfor- ~ OPportunistic data structure by studying how to choreo-
mance! The data structure is provably space optimal in 9raph its basic ideas with a dynamic setting. We show
aninformation-contensense because it stores a t&t, u] that a dynamic text collgctloA of sizew can bg stored in
usingO(Hy (T')) + o(1) bits per input symbol in the worst ~ O(H(A)) +o(1) bit per input symbol (for any fixed >0
case (for any fixedt > 0), where H,(T) is the kth order and not very shor‘g texts), support insert operations onindi
empirical entropy. Hj, expresses the maximum compres- Vidual textsT'[1, ¢] in O(tlog u) amortized time, delete op-
sion we can achieve using for each character a code whicterations oi’[1, t]in O(t log™) amortized time, and search
depends only on the characters preceding it. We pointout for & patternP[1,p] in O(plog® u + occlogu) time in the
occupancy i€ (u) bits which is actually optimal [12]; for pressible texf", our space bounds are the best known ones
since the data structures in [12] do not support updates (the

1The concept obpportunistic algorithrrhas been introduced in [9] to dynamic case is left as open in their Section 4)_
characterize an algorithm which takes advantage of the oessbility of . . . L .
the text to speed up its (scan based) search operations.r paper, we Finally, we investigate applications of our ideas to the

turn this concept into the one opportunistic data structure development of novel text retrieval systems based on the

www.manaraa.com

concept of block addressing (first introduced in the Glimpse Consequently, entryi[i] points to the suffix of” occupying
tool [19]). The notable feature of block addressing is that (a prefix of) theith row of M. The cost of performing the

it can achieve both sublinear space overhead and sublineaforward BWT is given by the cost of constructing the suffix
query time, whereas inverted indices achieve only the sec-array.4, and this require®(u) time [21].

ond goal [4]. Unfortunately, up to now all the known block The cyclic shift of the rows ofM is crucial to define
addressing indices [4, 19] achieve time and space sublinearthe backward BWT, which is based on two easy to prove
ity only under some restrictive conditions on the block size observations [7]:

We show how to use our opportunistic data structure to de-
vise a novel block addressing scheme, cal@limpse
(standing fotCompressed Glimpyewvhich always achieves
time and space sublinearity.

a. Given thejth row of M, its last charactek[i] precedes
its first character7'[i] in the original textT', namely
T = L[i|F[i]---.

b. Let L[i] = ¢ and letr; be the number of occurrences
of ¢ in the prefixL[1,i]. Let M[j] be ther;-th row of
M startingwith ¢. The character in the first colunfi

LetT'[1,u] be a text drawn from a constant-size alphabet ~ corresponding td.[i] is located at'[j]. We call this
Y. A central concept in our discussion is theffix array LF-mapping(Last-to-First mapping) and sétF[i] =
data structure [18]. The suffix array built onT'[1, u] is an J-
array containing the lexicographically ordered sequerice o)
the suffixes off’, represented via pointers to their starting We are now ready to describe the backward BWT:
positions (i.e.jntegery. For instance, ifl' = ababe then
A =11,3,2,4,5]. Clearly.A requiresu log, u bits, actually
a lot when indexing large text collections. Itis a long stand
ing belief that suffix arrays are uncompressible because of
the “apparently random” permutation of the suffix pointers.
Recent results in the data compression field have opened the 2. Define the LF-mappind F[1...u + 1] as follows:
door to revolutionary ways to compress suffix arrays and are LF[i] = C[L[i]] + r;, wherer; equals the number of
basic tools of our data structure. occurrences of the charactéfi] in the prefix L[1,]

In [7], Burrows and Wheeler propose a transformation (see observation (b) above).

(BWT from now on) consisting of a reversible permutation
of the text characters which gives a new string that is “eas-
ier to compress”. The BWT tends to group together char-
acters which occur adjacent to similar text substringssThi
nice property is exploited by locally-adaptive compressio
algorithms, such as move-to-front coding [6], in combina- Li
tion with statistical (i.e. Huffman or Arithmetic coders) o
structured coding models. The BWT-based compressors ar
among the best compressors currently available since theyf
achieve a very good compression ratio using relatively kmal

time and space. and of the high compressibility of. for space reduction.
The reversible BWT. We distinguish between for- This is actually the ultimate hope of any indexer: succinct
ward transformation, which produces the string to be com- and fast! In the next section, we show that this result is
pressed, and backwardtransformation which gives back achievable provided that a sublogarithmic slowdown (wrt
the original text from the transformed one. The forward the suffix array) is introduced in the cost of listing the pat-
BWT consists of three basic steps: (1) Append to the endtern occurrences.
of T a special characte# smaller than any other text char- Let 7" = bwt(T) denote the last colump, output of
acter; (2) form aconceptuamatrix M whose rows are the the BWT. Our indexing data structure consists of a com-
cyclic shifts of the string'# sorted in lexicographic order; pressed version df** together with some other auxiliary
(3) construct the transformed tektby taking the last col- array-based data structures that support random access to
umn OfM Notice that every column QM isa pel’muta- wa_ We Compresg’bw in three Steps (See also [20])
tion of the last columr., and in particular the first column
of M, callit F', is obtained by lexicographically sorting the
charactersirl.

2 Background

1. Compute the array’[1...|X]|] storing in C[c] the
number of occurrences ifl" of the characters
{#,1,...,c — 1}. Notice thatC|c] + 1 is the posi-
tion of the first occurrence afin F (if any).

3. Reconstruc” backward as follows: set = 1 and
T[u] = L[1] (becauseM|[1] = #T); then, for each
i=u—1,...,1dos = LF[s] andT[i] = L]s].

In [26] it is shown how to derive the suffix array from

n linear time; however, in the context of pattern search-
ing, the algorithm in [26] is no better than the known scan-
ased opportunistic algorithms (such as [9]). Nonetheless
heimplicit presence of the suffix arrag into L suggests to
take full advantage of the structure dffor fast searching,

1. Use a move-to-front coder, briefigtf [6], to encode
a character: via the count of distinct characters seen

There is a strong relation between the mattikand the
suffix array A of the string7T. When sorting the rows of
the matrix M we are essentially sorting the suffixesof

since its previous occurrence. The structural proper-
ties of T°, mentioned above, imply that the string
T = mtf£(T*") will be dominated byow numbers

www.manaraa.com

2. Encode each run of zeroesIi*/ using run length .
encoding £1e). More precisely, replace the sequence Algorithm BW_Count(P[1, p])
0™ with the number(rn + 1) written in binary, least 1. ¢ = Plpl,i = p;
significant bit first, discarding the most significant bit. _
For this encoding we use two new symb0land1 so 2. sp=Clc]+1,ep=Clc+1];
that the resulting strin@”! = rle(7™/) is over the 3. while ((sp < ep) and (i > 2)) do
alphabet{0,1,1,2,...,|¥| — 1}.

4. c=Pli—1];

3. CompressI'™ by means of a variable-length prefix 5 —-C 0 1sp—1) 41
code, calledPC, which encodes the symbalsand1 ' 5P le] + Occle, Lsp = 1) + 13
using two bits {0 for 0, 11 for1), and the symbal us- 6. ep = Clc] + Occ(c, 1, ep);
ing a variable-length prefix code af+ 2 [log(i + 1) | 7. i=i—1;
bits, the first one being a zero. 8. if (ep < sp) then return “pattern not found”

The resulting algorithnBW_RLX = bwt + mtf + rle + elsereturn “found (ep — sp + 1) occurrences”
PC is sufficiently simple so that in the rest of the paper we
can concentrate on the searching algorithm without being Figure 1. Algorithm for counting the number
distracted by the details of the compression. Despite of the of occurrences of P[1,p]in T[1,u].
simplicity of BW_RLX, using the results in [28]it is possible
to show that (proof in the full paper), for arty> 0 and for
anyT there exists a constagt such that

points to the first row of prefixed byP][i, p] and the pa-
BWRLX(T)| <5 |T| Hi(T) + gi log|T)| (1) rameterep points to the last row oM prefixed byP[i, p].
The pseudo-code is given in Fig. 1. In the first phase (i.e.
whereH;, is thekth order empirical entropyH;, expresses i = p), sp andep are determined via the array defined
the maximum compression we can achieve using for eachin Section 2 (Step 2). The valuep andep are updated
character a code which depends only on theharacters at Steps 5 and 6 using the subroutiDec(c, 1, k) which

preceding it. reports the number of occurrencescih 7°“[1, k]. Note
that at Steps 5 and 6 we are computing the LF-mapping
3 Searching in BWT-compr | text for, respectively, the first and the last occurrence (if aofy)

P[i — 1] in T"*[sp, ep]. If at the generidth phase we have
ep < sp we can conclude thaP[i, p| does not occur i’
Let T'[1,u] denote an arbitrary text over the alphaBgt and henceP does not too. After the final phasey andep
andletZ = BW_RLX(T'). In this section we describe an algo- will delimit the portion of M (and thus of the suffix array
rithm which, given a patter#[1, p], reports all occurrences 4) containing all the text suffixes prefixed B. The in-
of P in the uncompressed teXt by looking only atZ and teger(ep — sp + 1) will therefore account for the number
without uncompressing all of it. Our algorithm makes use of occurrences of in T'. The following lemma proves the
of the relation between the suffix array and the matrix correctness oBW_Count assumingdcc works as claimed
M. Recall that the suffix arrayl posses two nice structural (proof in the full paper).
properties which are usually exploited to support fast pat-
tern searches: (i) all the suffixes of the t@xtprefixed by Lemmal Fori = p,p—1,...,2,if P[i—1,p] occurs inT’
a patternP occupy a contiguous portion (subarray).4f then Step 5 (resp. Step 6) B¥V_Count correctly updates

(ii) that subarray has starting positiap and ending posi- the value ofsp (resp. ep) thus pointing to the first (resp.
tion ep, wheresp is actually thelexicographic positiorof last) row prefixed byP[i — 1, p). [

the stringP among the ordered sequence of text suffixes.

) The running time oBW_Count depends on the cost of
3.1 StepI: Counting the occurrences the procedur®cc. We now describe an algorithm for com-
putingOcc(e, 1, k) in O(1) time, on a RAM with word size
We now describe an algorithm, callBiv_Count, which O (log u) bits.

identifies the positiongp andep by accessing only the com- We logically partition the transformed strid®™ into
pressed string and some auxiliargrray-baseddata struc- substrings of characters each (calldmickety, and denote
tures. them byBT; = T**[(i — 1)+ 1,if], fori = 1,...,u/L.

BW_Count consists of phases each one preserving the This partition naturally induces a partition ¢/ into
following invariant: At the i-th phase, the parametesp /¢ buckets BTy ... BT™!' of size ¢ too. We as-

u/l
o .
2The algorithmBWRLX corresponds to the proceduse described sume t_hat e"?‘Ch run of zeroes "t/ IS entirely con-
in [20] tained in a single bucket and we describe our algorithm

www.manaraa.com

for computingOcc(e, 1, k) under this simplifying assump-

T [k] is determined via = [k//(], together with the posi-

tion. The general case in which a sequence of zeroes mayionj = k— (i—1)£ of this character ilBT'; and the param-

span several buckets is similar and thus its discussiortis deeteri*

ferred to the full paper. Under our assumption, the buck-
ets BTimtf’s induce a partition of the compressed fite
into u/¢ compressed bucket3Z, ..., BZ,,, defined as
BZ; = PC(r1le(BT")).

Let BT; denote the bucket containing the charac-
ter T°“[k] (namely i [k/€]). The computation of
Occ(c, 1,k) is based on a hierarchical decomposition of
T*[1,k] in three substrings as follows: (i) the longest
prefix of T°*[1,k] having length a multiple of? (i.e.
BT, ---BTy;-, wherei* = L’?zlj), (ii) the longest pre-
fix of the remaining suffix having length a multiple 6fi.e.
BTyi«y1 --- BT;_1), and finally (iii) the remaining suffix
of T**[1, k] which is indeed a prefix of the buckéT;.

We computeOcc(e, 1, k) by summing the number of oc-
currences of: in each of these substrings. This can be done
in O(1) time and sublinear space using the following auxil-
iary data structures.

For the calculations on the substring of point (i):

e Fori=1,...,u/f? thearrayN O;[1, |3|] storesin the
entry N O;[c] the number of occurrences of the charac-
tercin BT ---BT},.

e The arrayW|[1,u/¢?] stores in the entr{¥’ [i] the value

Z;i] |BZ ;| equals to the sum of the sizes of the com-
pressed bucket8 7, BZ;.

3 3

For the calculations on the substring of point (ii):

e Fori=1,...,u/¢, the arrayNOj[1, |X|] stores in the
entry NO}[c] the number of occurrences of the char-
acterc in the stringBT;- 1 - -- BT;_ (this concate-
nated string has length less théh).

The arrayW'[1,u/¢] stores in the entry#’'[i] the

valueZ;';i“r] |BZ | equals to the overall size of the
compressed bucke3Z ;- 1,..., BZ; 1 (the value is
bounded above b§(£2)).

For the calculations on the (compressed) buckets:

e The arrayM T F[1,u/¢] stores in the entrW/ T F[i] a
picture of the state of the MTF list at the beginning of
the encoding oBT';. Each entry takes:| log |X| bits
(i.e.O(1) bits).

The tableS stores in the entn§|c, j,b, m] the num-
ber of occurrences of among the firstj characters
of the compressed striny assuming thain is the
picture of the MTF list used to produde Thus, en-
try Sc, 3, BZ;, MT F'[i]] stores the number of occur-
rences of: in BT;[1,j]. TableS hasO(¢2") entries
each one occupyin@(log ¢) bits, where/’ is the max-
imum length of a compressed bucket.

The computation ofOcc(e, 1, k) therefore proceeds as
follows. First, the buckeBT'; containing the character=

|(k — 1)/¢2]. Then the number of occurrences
of ¢ in the prefix BT, - - - BT'y;~ (point (i) is determined
via NO;-[c], and the number of occurrences ©fin the
substringBT y;«, ..., BT;_1 (point (ii)) is determined via
NOj[c]. Finally, the compressed buck8tZ; is retrieved
from Z (notice thafV [i*]+W'[i]+1 is its starting position),
and the number of occurrenceswofithin BT';[1, j] are ac-
counted accessing(c, j, BZ;, MT F[i]] in O(1) time. The
sum of these three quantities givesc(c, 1, k).

By construction any compressed buck®f ; has size at
mostl’ = (1 + 2 [log X)¢ bits. We choosé = ©(logu)
so that!’ = clogu with ¢ < 1. Under this assumption,
every step ofOcc consists of arithmetic operations or table
lookup operations involving (log u)-bit operands. Conse-
quently every call t@®cc takesO(1) time on a RAM. As far
as the space occupancy is concerned, the aiv@ysandiW
takeO((u/?)logu) = O(u/logu) bits. The arraysvVO’
andW' takeO((u/¢) logt) = O((u/ log u) loglog u) bits.
The arrayM T F takesO(u/¢) = O(u/logu) bits. Table
S consists of0(¢2") log ¢-bit entries and thus it occupies
02" l1ogl) = O(u¢loguloglogu) bits, wherec < 1.
We conclude that the auxiliary data structures use@®byg
occupyO((u/ log u) log log u) bits (in addition to the com-
pressed fileZ).

Theorem 1 Let Z denote the output of the algorithm
BW_RLX on input7'[1,u]. The number of occurrences of a
patternP[1, p] in T'[1,u] can be computed i®(p) time on

a RAM. The space occupancy|B| + ()(L

ogu loglog u)
bits in the worst case.

[
3.2 Step Il: Locating the occurrences

We now consider the problem of determining the exact
position in the textl" of all the occurrences of the pattern
P[1, p]. This meansthat for = sp, sp+1, ..., ep, we want
to find the text positionos(s) of the suffix which prefixes
the sth row M([s]. We propose two approaches: the first one
is simple and slow, the second one is faster and relies on the
very special properties of the the strifi§®.

In the first algorithm wdogically markthe rows of M
which correspond to text positions having the form- iz,
forn = O(log>u) andi = 0,1,...,u/n. We store with
these marked rows the starting positions of the correspond-
ing text suffixes explicitly. This preprocessing is done at
compression time. At query time we fings(s) as fol-
lows. If s is a marked row, then there is nothing to be done
and its position is directly available. Otherwise, we use th
LF-mapping to find the rows’ corresponding to the suffix
Tlpos(s) — 1,u]. We iterate this procedure times until
s' points to a marked row; at that poipts(s') is available
and we sepos(s) = pos(s') + v. The crucial point of

www.manaraa.com

the algorithm is the logical marking of the rows &f cor- rows we explicitly keep the starting position of the corre-
responding to the text suffixes starting at positians in, sponding text suffixes. To computes(s) we first compute

i = 0,...,u/n. Our solution consists in storing the row the LF-mapping inM until we reach a marked row/. Then
numbers in a two-level bucketing scheme. We partition the we computepos(s’) by finding its corresponding row in
rows of M into buckets of sizeéd(log” u) each. For each M, and computing the LF-mapping i, (via Lemma 2)
bucket, we take all the marked rows lying into it, and store until we reach a marked rowf' in My (for which pos(s")
them into a Packet B-tree [3] using as a key their distanceis explicitly available by construction). The marking Bf
from the beginning of the bucket. Since a bucket contains atand the counting of the number of marked rows\ifi that
mostO (log” u) keys, eachD (log log u) bits long, member- precede a given marked rov (this is required in order to
ship queries také(1) time on a RAM. The overall space determine the position iM, of M|[s']) can be done in con-

required for the logical marking i®((u/n) loglogu) bits. stant time ancD(% loglog u) bits of storage using again a

In addition, for each marked row we also keep the starting Packed B-tree and a two level bucketing scheme as before.
position of the corresponding text suffix (i.ees()), which In addition, for©(|7,|/n) rows of M, we keep explic-
requires additional) (log u) bits per marked row. Conse- itly their positions inT, which take®((|Ty|/7) logu) =
quently, the overall space occupancyi$(u/n)logu) = O(u/log** u) bits of storage. The space occupancy of the

O(u/logu) bits. For what concerns the time complexity, procedure for computing the LF-mapping Tif* is given
our algorithm computegos(s) in at mosty = O(log” u) by Lemma 2. Since{(Ty) < v Hy(T), a simple alge-
steps, each taking constant time. Hencevieoccurrences braic calculation yields that the overall space occupascy i
of a pattern? in T can be retrieved i (occ log” u) time, 0 (Hk (T) + log]% u) bits per input symbol, for any fixekl

with a space overhead 6f(u/ logu) bits. Combining the _ i)) o
results of this section with (1) we have: The time complexity of the algorithm i8(~y) (for finding a
marked row inM) plus O(7 log® u) (for finding a marked

Theorem 2 A text T'[1,u] can be preprocessed i6)(u) row in My), thusO(log'/?*2¢ 1) time overall.
time so that all thexcc occurrences of a patter®[1, p] in
T can be listed inO(p + occlog® u) time on a RAM. The

space occupancy is boundedW, (1)) + O(©E252) bits

per input symbol in the worst case, for any fixett 0.

The final time bound of(log®) for the computation
of pos(s) can be achieved by iterating the approach above
as follows. The main idea is to takey = O(log u),
and apply the procedure for computing the LF-mapping in
To for O(log® w) steps, thus identifying a row; of the
matrix M, such thatpos(s;) has the forml + iy, with
71 = O(log* u). Next, we define the string; obtained
by grouping the characters @f into blocks of sizey; and
fve consider the corresponding matfix, . By construction
s1 corresponds to a row iM; and we can iterate the above
scheme. At thgth step we operate on the matrix;_; un-
til we find a rows; such thapos(s;) has the forml + ivy;

We now refine the above algorithm in order to compute
pos(s) in O(log® u) time for any fixede > 0. We still use
the idea of marking some of the rows.W, however we in-
troduce somehortcutswhich allow to move inl" by more
that one character at a time, thus reducing the number o
steps required to reach a marked position. The key ingredi-
ent of our new approach is a procedure for computing the
LF-mapping over a string’ drawn from an alphabet of

non-constansize (proof and details in the full paper): wherey; = O(log"/*") u). This continues untij reaches
the value[1/e]. At that point the matrixM; consists of
Lemma2 Given a stringT'[1,v] over an arbitrary al- ©(u/log' ™ u) rows, whered = [1/¢] e — 1. Since we
phabetA, we can compute the LF-mapping ovEF in can always choose so thaté > 0, we can store explic-
O(log® v) time usingO(v(1 + Hy(T)) + |A|*+(log |A| + itly the starting positionos() of the marked text suffixes
log v)) bits of storage, for any given> 0. n in M; using sublinear space, i.e(u) bits. Summing up,
o the algorithm computesos(s) in [1/€] = ©(1) iterations,
We use Lemma 2 to compuges(s) in O(log!"/?+2¢ v) each taking (log”® u) time. Since is an arbitrary positive
time; this is an intermediate result that will be then refined constant, it is clear that we can rewrite the previous time
to achieve the final (log* u) time bound. bound as9(%6°%) = O(log® u). The space occupancy is
At compression time we logically mark the rows 64 dominated by the one required for the marking'eff

which correspond to text positions of the formy i+ for

i =0,...,u/yandy = O(log"/?*<u). Then, we con-

sider the strind, obtained by grouping the charactersiof

into blocks of sizey. ClearlyT} has length:/~ and its char-)

acters belong to the alphal®t. Let M, denote the cyclic- ~ Theorem 3 A textT[l,u] can be indexed so that all the
shift matrix associated t,; notice that\, consists of the ¢cc occurrences of a patter#[1, p| in T' can be listed in

marked rows of\. Now we mark the rows o, corre- O(p + occlog’ lu)ltime on a RAM. The space occupancy
sponding to the suffixes df, starting at the positions+ 7, is O(H(T') + <537 bits per input symbol in the worst
fori = 0,....|Ty|/n andy = O(log'/?*w). Forthese case, for any fixed > 0. n

www.manaraa.com

4 Dynamizing our approach

Let A be a dynamic collection of text&I,..., T}
having arbitrary lengths and total size CollectionA may
shrink or grow over the time due tosert anddelete oper-
ations which allow to add or remove froth an individual
text string. Our aim is to stord in succinct space, perform

the subsetS! is selected, where = |logt|, andT is in-
serted into it using the following approach.df is empty
then the compressed index is built f6rand associated to
this subset, thus takin@(¢) time. Otherwise the new set
Stu{T}is formed and inserted i”, , . If the latter subset

is not empty then the insertion process is propagated umtil a
empty subse‘S{‘H is found. At this point, the compressed

the update operations efficiently, and support fast searche iNdex is built over the sef? U ... U Sy ;_, U {T}, by

for the occurrences of an arbitrary pattd?fil, p] into A’s

texts. This problem can be solved in optimal time complex-

ity and ©(u log u) bits of storage [10, 21]. In the present
section we aim atlynamizingour compressed index in or-

concatenating all the texts contained in this set to form a
unigue string, texts are separated by a special symbol (as
usual). By noticing that these texts have overall length
©(2'*+7), we conclude that this propagation process has a

der to keepA in a reduced space and be able to efficiently COMPlexity proportional to the overall length of theoved
support update and search operations. Our result exploitd€Xts: Although each single insertion may be very costly, we

an elegant technique proposed in [22, 25], here adapted t

manage items of variable lengths (i.e. texts).

In the following we bound the space occupancy of our
data structure in terms of the entropy of the concatenatfion o
A's texts. A better overall space reduction might be possi-

bly achieved by compressing separately the t&Xss How-
ever, if the textsl;’s have similar statistics, the entropy of

the concatenated string is a reasonable lower bound to th

compressibility of the collection. Furthermore, in the lpro

abilistic setting where we assume that every text is gener-

Jgan amortize this cost by charginylog) credits per text

character (since, j = O(logu)), thus obtaining an overall
amortized cost of)(tlog u) to insertT'[1,¢] in A. Some
care must be taken to evaluate the space occupied during
the reconstruction of the s&t. In fact, the construction

of our compressed index over the sgt requires the use

of the suffix tree data structure (to compute the BWT) and

dhusO(2" log 2) bits of auxiliary storage. This could be too

much, but we ensured that every collectifncontains texts
having overall lengtfO(—%—). So that at mosO (%)

log? u log u

ated by the same probabilistic source, the entropy of the Pits suffices to support any reconstruction process.

concatenated string coincides with the entropy of the sin-

We now show how to support text deletions fraxm The

gle texts and therefore provides a tight lower bound to the main problem here is that from one side we would like to

compressibility of the collection.
In the following we focus on the situation in which the
lengthp of the searched patternd() because for the

_u
log2 u

other range op’s values, the search operation can be im-

physically cancel the texts in order to avoid the listing of
ghostoccurrences belonging to texts no longerAn but

from the other side a physical deletion would be too much
time-consuming to be performed on-the-fly. Amortization

plemented in a brute-force way by first decompressing the can still be used but much care must be taken when answer-

text collection and by then searching fBrinto it using a
scan-based string matching algorithm(rp log® u + occ)
time. We partition the text§}'s into = O(log” u) col-
lectionsC!, .. .,C", each containing texts of overall length
O(mqu —). This is always possible, independently of the
lengths of the text strings i, since the upper bound on the
length of the searchable patterns allows us to split verg lon
texts (i.e. texts of Iength@(ﬁq)) into 21og” u pieces
overlapping f0r9(10g+u) characters. This covering of a
single long text with many shorter ones still allows us to
find the occurrences of the searched patterns.

Every collectionC” is then partitioned into a series of
subsetsS! defined as follows:S!* contains some texts
of C"* having overall length in the rande?, 2¢+'), where
i = O(logu). Each setS" is simultaneously indexed and

ing a query to properly deal with texts which have bésmp
ically deleted from theS!’s. For the sake of presentation
let T°* be the BWT of the texts stored in some &t We
store in a balanced search tree the Bewf interval posi-
tions inT°* occupied by deleted text suffixes. If a pattern
occurrence is found if"** using our compressed index,
we can check irO(logw) time if it is a real or a ghost oc-
currence. Every time a text[1,¢] must be deleted from
SI, we search for all of its suffixes i and then update
accordinglyZ! in O(tlog u) time. The additional space re-
quired to store the balanced search tre@ (" | logu) =
O(log“3 —) bits, where we are assuming to physically delete

the texts fromS” as soon as a fraction (ﬁ)(logl—gu) suf-

fixes is logically marked. Hence, each st may undergo
O(log” u) reconstructions before it shrinks enough to move

compressed using our opportunistic data structure. Searchback to the previous s&” ;. Consequently the amortized

ing for an arbitrary patter®[1, p] in A, withp = O(—%)

log? u

can be performed by searching fBrin all the O(log® u)

subsetsS! via the compressed index built on each of them.

This takesD (plog® u + occlog® u) time overall.
Inserting a new texf'[1,¢] into A consists of insert-
ing T into one of the set€”, the most empty one. Then,

cost ofdelete is O(t log u +tlog® u) = O(tlog” u), where
the first term denotes the costBff’s update and the second
term accounts for the credits to be left in order to pay for
the physical deletions.

Finally, to identify a text to be deleted we append to ev-
ery text in A an identifier ofO(logw) bits, and we keep

www.manaraa.com

track of the subse$! containing a given text via a table.
This introduces an overhead 6f(m logu) bits which is

Our opportunistic index naturally fits in this block-
addressing framework and allows us to extend its applica-

o(u) if we reasonably assume that the texts are not too short bility to larger text databases. The new approach, named

i.e. w(logu) bits each.

Theorem4 Let A be a dynamic collection of texts
{T1,Ts,...,T,} having total length:. All the occ occur-
rences of a patterrP[1, p] in the texts ofA can be listed

in O(plog® u + occlogu) time in the worst case. Opera-
tioninsert adds a new text'[1, ¢] to A in O(t log u) amor-
tized time. Operatiordelete removes a texi'[1,¢] from

A in O(tlog? u) amortized time. The space occupancy is

O(Hk(A) + ml‘)g“) + o(1) bits per input symbol in the

u
worst case for any fixekl > 0. |

5 A simpleapplication

Glimpse [19] is an effective tool to index linguistic texts.
From a high level point of view, it is a hybrid between in-
verted files and scan-based approaches witlindex. It
relies on the observation that there is no need to index ever
word with an exact location (as it occurs in inverted files);

but only pointers to an area where the word occurs (called
a blocK should be maintained. Glimpse assumes that the

text T'[1, u] is logically partitioned intor blocks of sizeb
each, and thus its index consists of two partgoeabulary
V' containing all the distinct words of the text; and for each
wordw € V, alist L(w) of blockswhere the wordv occurs.
This blocking scheme induces two space savings: pointer

Compressed Glimpgshortly CGlimpse), consists in us-
ing our opportunistic data structure to index each textkbloc
individually; this way, each candidate block is not fully
scanned at query time but its index is employed to fasten
the detection of the pattern occurrences. In some sense
CGlimpse is a compromise between a full-text index (like
a suffix array) and a word-based index (like an inverted list)
over a compressed text.

A theoretical investigation of the performance of
CGlimpse is feasible using a model generally accepted
in Information Retrieval [4]. It assumes the Heaps law to
model the vocabulary size (i.&, = O(u®) with 0 < § <
1), the generalized Zipf's law to model the frequency of
words in the text collection (i.e. the largest frequency of
a word i3u/(z’9H‘(f)), whereH‘(f) is a normalization term
andd is a parameter larger thdr), and assumes théx(u?)
is the number of matches for a given word with> 1 errors
(wherep < 1). Under these hypothesis we can show that

yCGIimpse achievesboth sublinear space overhead and
sublinear query time independent of the block gj@eof

in the full paper). Conversely, inverted indices achievilyon
the second goal [27], and classical Glimpse achieves both
goals but under some restrictive conditions on the block
size [4].

H Conclusions

to word occurrences are shorter, and the occurrences of the

same word in a single block are represented only once. Typ- Some issues remain still to be investigated in various

ically the index is very compact: 2-4% of the original text models of computation. In external memory, it would be

size [19]. interesting to devise a compressed index which takes ad-
Given this index structure, the search scheme proceeds irvantage of the blocked access to the disk and thus achieves

two steps: first the queried wotdis searched in the vocab-
ulary V, then all candidate blocks df(w) aresequentially
examined to find all thev’s occurrences. Complex queries

O(occ/ B) 1/Os for locating the pattern occurrences, where
B is the disk-page size. In the RAM, it would be interest-
ing to avoid theo(log u) overhead incurred in the listing of

(e.g. approximate or regular expression searches) can behe pattern occurrences. In the full paper we will show how

supported by usinggrep [28] both in the vocabulary and

to use known techniques (see e.g. [11]) for designing hy-

in the block searches. Clearly, the search is efficient if the brid indices which achiev®(occ) retrieval time cost under
vocabulary is small, if the query is enough selective, and if restrictive conditions either on the pattern length or o th
the block size is not too large. The first two requirements number of pattern occurrences. Guaranteeing@liecc)

are usually met in practice, so that the main constrainteo th retrieval cost in the general case is an open problem also in
effective use of Glimpse remains the strict relation betwee the uncompressed setting [12].

block-pointer sizes and text sizes. Theoretical and exper-

imental analysis of suc_h block-address!ng sche_zme [4, 19]References

have shown that the Glimpse approach is effective only for
medium sized texts (roughly up 20Mb). Recent papers
tried to overcome this limitation by compressing each text
block individually and then searching it via proper oppor-
tunistic string-matching algorithms [19, 24]. The experi-
mental _results showed an improve_m_ent of a_bout 30-50% Pattern matching in Z-compressed filedournal of Com-

in the final performance, thus implicitly proving that the puter and System Sciencé€(2):299-307, 1996.

second searching step dominates Glimpse’s query perfor- [3] A. Andersson. Sorting and searching revisited. In R. G.
mance. Karlsson and A. Lingas, editor®roceedings of the 5th

[1] A. Amir and G. Benson. Efficient two-dimensional com-
pressed matchingProceedings of IEEE Data Compression
Conferencepages 279-288, 1992.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie:

www.manaraa.com

(4]

Scandinavian Workshop on Algorithm Theopages 185—
197. Springer-Verlag LNCS n. 1097, 1996.

R. Baeza-Yates and G. Navarro. Block addressing indices
for approximate text retrievaldJournal of the American So-
ciety for Information Scien¢é1(1):69-82, 2000.

[5] J. Bentley. Programming Pearls Addison-Wesley, USA,

[6] J. Bentley, D. Sleator, R. Tarjan, and V. Wei.

(7]

(8]

9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

1989.

A locally
adaptive compression schen@ommunication of the ACM
29(4):320-330, 1986.

M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124, Digital
Equipment Corporation, 1994,

S. Chen and J. Reif. Using difficulty of prediction to de-
crease computation: Fast sort, priority queue and convex
hull on entropy bounded inputs. IRroceedings of the
34th IEEE Symposium on Foundations of Computer Scjence
pages 104-112, 1993.

M. Farach and M. Thorup. String matching in Lempel-Ziv
compressed stringglgorithmica 20(4):388—-404, 1998.

P. Ferragina and R. Grossi. The string B-tree: A new data
structure for string search in external memory and its appli
cations.Journal of the ACM46:236-280, 1999.

P. Ferragina, S. Muthukrishnan, and M. deBerg. Multi-
method dispatching: A geometric approach with applica-
tions to string matching problems. Rroceedings of the
31st ACM Symposium on the Theory of Computpages
483-491, 1999.

R. Grossi and J. Vitter. Compressed suffix arrays antixsuf
trees with applications to text indexing and string matghin
In Proceedings of the 32nd ACM Symposium on Theory of
Computing 2000.

J. Kéarkkainen and E. Sutinen. Lempel-Zip index fpr
grams. In J. Diaz and M. Serna, editdPspceedings of the
4th European Symposium on Algorithnmages 378-391.
Springer-Verlag LNCS n. 1136, 1996.

J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing and
sublinear-size index structures for string matching. IiZN.
viani, R. Baeza-Yates, and K. Guimaraes, editBroceed-
ings of the 3rd South American Workshop on String Process-
ing, pages 141-155. Carleton University Press, 1996.

A. Karlin, S. Phillips, and P. Raghavan. Markov pagieg-(
tended abstract). IRroceedings of the 33rd IEEE Sympo-
sium on Foundations of Computer Scienpages 208—-217,
24-27 Oct. 1992.

D. E. Knuth. Sorting and Searchingrolume 3 ofThe Art of
Computer Programming Addison-Wesley, Reading, MA,
USA, second edition, 1998.

P. Krishnan and J. Vitter. Optimal prediction for prfeing

in the worst caseSIAM Journal on Computin@7(6):1617—
1636, Dec. 1998.

U. Manber and G. Myers. Suffix arrays: a new method
for on-line string searchesSIAM Journal on Computing
22(5):935-948, 1993.

U. Manber and S. Wu. GLIMPSE: A tool to search through
entire file systems. IfProceedings of the USENIX Winter
1994 Technical Conferencpages 23-32, 1994.

G. Manzini. An analysis of the Burrows-Wheeler trans-
form. In Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithmspages 669-677, 1999. Full version
in www.imc.pi.cnr.it/"manzini/tr-99-13/ .

[21]

[22]

(23]

[24]

[25]

[26]

[27]

28]

E. M. McCreight. A space-economical suffix tree constru
tion algorithm.Journal of the ACM23(2):262-272, 1976.

K. Mehlhorn and M. H. Overmars. Optimal dynamization of
decomposable searching problemgformation Processing
Letters 12(2):93-98, Apr. 1981.

J. I. Munro. Succinct data structures. Rroceeding of
the 19th Conference on Foundations of Software Technology
and Theoretical Computer Sciencgpringer-Verlag LNCS

n. 1738, 1999.

G. Navarro, E. de Moura, M. Neubert, N. Ziviani, and
R. Baeza-Yates. Adding compression to block addressing
inverted indexes.Information Retrieval Journal2000, (to
appear).

M. H. Overmars and J. van Leeuwen. Worst-case optimal
insertion and deletion methods for decomposable searching
problems. Information Processing Letterd2(4):168-173,
Aug. 1981.

K. Sadakane. A modified Burrows-Wheeler transformatio
for case-insensitive search with application to suffix yarra
compression. IrProceedings of IEEE Data Compression
Conference1999.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images
Morgan Kaufmann Publishers, Los Altos, CA 94022, USA,
second edition, 1999.

S. Wu and U. ManbemGREP- A fast approximate pattern-
matching tool. InProceedings of the Usenix Winter 1992
Technical Conferengcgpages 153-162. Usenix Association,
1992.

www.manaraa.com

